Síntese de Candidatos a Inibidores da Enzima FAAH e Moduladores Canabinóides Planejados a Partir do Cardanol

Camila de O. Miranda¹⁻³ (PG), Luiz A. S. Romeiro*¹⁻³ (PQ) E-mail: luizromeiro@unb.br

¹Programa de Pós-Graduação em Ciências Farmacêuticas, UnB-DF; ²Laboratório de Desenvolvimento de Estratégias Terapêuticas, UCB-DF; ³Laboratório de Desenvolvimento de Inovações Terapêuticas – LDT/NMT/UNB;

Palavras Chave: Neuroproteção, Inibidores FAAH, Moduladores CBr, Planejamento Racional, Cardanol

Abstract

Synthesis of Novel FAAH Inhibitors and Cannabinoid Modulators Candidates Designed from Cardanol. 9 novel AEA-related ethanolamides – candidates to FAAHi/CBRMs – were obtained from technical cardanol in 47-92% yields.

Introdução

As doenças neurodegenerativas envolvem mais de seiscentas desordens no sistema nervoso, as quais podem ser hereditárias ou esporádicas e são caracterizadas pela disfunção progressiva do sistema nervoso. As N-aciletanolaminas, moléculas moduladoras endógenas de receptores canabinóides (CB) fazem parte das amidas de ácidos graxos (anandamida, palmitoiletanolamida e oleoiletanolamida).1 Estes receptores, por sua vez, estão relacionados a diversos efeitos fisiológicos analgesia, atividade anti-inflamatória e aquisição de memória.2 Os inibidores de amidas hidrolases de ácidos graxos (FAAH) compreendem uma classe com alta relevância e potencial terapêutico, pelo aumento da disponibilidade de endocanabinóides que ativam os receptores PPARs e CB locais promovendo resposta neuroprotetora. Nesse contexto, este trabalho descreve a síntese de novas entidades químicas análogas à anandamida, candidatas a inibidores da enzima FAAH e moduladores canabinóides, planejadas a partir do cardanol.

Os compostos-alvo foram planejados a partir da mistura de cardanóis, em que a cadeia alquílica lateral (subunidade hidrofóbica) visa mimetizar as interações envolvidas no reconhecimento molecular de canabinóides endógenos pelos alvos propostos.

Resultados e Discussão

A mistura de cardanóis foi purificada em coluna cromatográfica, acetilada com Ac₂O/H₃PO₄ sob radiação microondas em aparelho doméstico e submetida à reação de ozonólise seguida de redução com NaBH₄ levando ao álcool LDT71. Este foi oxidado ao respectivo ácido carboxílico LDT108, sem proteção do fenol, via reação de Jones. LDT108 foi regioespecificamente esterificado com Mel na presença de NaHCO₃ em acetona sob refluxo. LDT108-OMe foi submetido a reações de *O*-alguilação com iodetos ou brometos de alguila —

etila a octila – com K_2CO_3 e DMF sob refluxo levando aos respectivos O-alcóxiésteres. Os intermediários-chave foram submetidos à reação de aminólise com etanolamina sob aquecimento, para obtenção das amidas-alvo.

Figura 1. Rota sinética dos derivados alvos

Tabela 1. Caracterização dos derivados-alvo.

Derivado	R	MM (g/mol)	P.f. (°C)	Rendimento (%)
COM1	CH ₃	293,401	40,2-42,0	87,9
COM2	C_2H_5	307,427	40,5-42,2	47,5
COM3	C_3H_7	321,454	43,2-44,7	61,8
COM4	C_4H_9	335,480	40,7-41,5	91,5
COM5	C_5H_{11}	349,507	36,1-38,0	48,7
COM6	C_6H_{13}	363,534	41,2-43,2	69,1
COM7	C_7H_{15}	377,560	43,5-45,2	55,3
COM8	C_8H_{17}	391,587	42,4-43,2	60,2
COM9	Н	335,480	-	58,2

Conclusões

Os produtos intermediários e finais foram obtidos em rendimentos razoáveis e caracterizados por RMN. A otimização das metodologias e a avaliação da atividade frente à enzima FAAH e receptores canabinóides, para estabelecimento de relações estrutura-atividade, compreendem as perspectivas deste trabalho.

Agradecimentos

Os autores agradecem à CAPES pela concessão de bolsa à COM, ao CNPq pelo auxílio financeiro e à UnB e à UCB pelo uso de facilidades em seus laboratórios.

¹BENITO, C.; et al., Br J Pharmacol, 2012, v.166, p.1474-1489.

² MAZZOLA, C., et al., Learn Mem, **2009**, v.16, p.332-337.

³ EZZILI, C., et al., Biorg Med Chem Lett, **2010**, v.20, p.5959-5968.